UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education | NAME
CENTRE | | CANDIDATE | | |-----------------|------|------------------|-------| | NUMBER | | NUMBER | | | CHEMISTRY | | 06 | 20/31 | | Paper 3 (Extend | ded) | October/November | 2010 | Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. A copy of the Periodic Table is printed on page 16. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Exam | iner's Use | |----------|------------| | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | Total | | | L | I. | 1 hour 15 minutes This document consists of 15 printed pages and 1 blank page. 1 The table gives the composition of three particles. | particle | number of protons | number of electrons | number of neutrons | | | |----------|-------------------|---------------------|--------------------|--|--| | Α | 15 | 15 | 16 | | | | В | 15 | 18 | 16 | | | | С | 15 | 15 | 17 | | | | (i) | Particle A is an atom. | | |-------|---|-----| | (ii) | They are all particles of the same element. | [1] | | | | | | (iii) | Particle B is a negative ion. | | | | | ٠. | |------|---|-----| | (iv) | Particles A and C are isotopes. | | | | | | | | | [2] | (b) (i) What is the electronic structure of particle A? (ii) What is the valency of the element? (iii) Is the element a metal or a non-metal? Give a reason for your choice. [Total: 9] | 2 | About 4 tin. | 000 years ago the Bronze Age started in Britain. Bronze is an alloy of copper and | | | | | | | | |---|----------------|--|--|--|--|--|--|--|--| | | (a) (i) | Suggest a reason why a bronze axe was better than a copper axe. | | | | | | | | | | (ii) | Brass is another copper alloy. Name the other metal in brass. | | | | | | | | | | (b) The | e diagram below shows the arrangement of particles in a pure metal. | (i) | What is the name given to a regular arrangement of particles in a crystalline solid? | | | | | | | | | | (ii) | Draw a diagram which shows the arrangement of particles in an alloy. | | | | | | | | | | (, | Draw a diagram which chows the arrangement of particles in an alloy. | [2] | | | | | | | | | | (iii) | Explain the term <i>malleable</i> . | | | | | | | | | | <i>a</i> , | [1] | | | | | | | | | | (iv) | Why are metals malleable? | | | | | | | | | | | [2] | | | | | | | | | For | |------------| | Examiner's | | Use | | (c) | The | common | ore | of | tin | is | tin(IV) | oxide | and | an | ore | of | copper | is | malachite, | |-----|------------------|--------|-----|----|-----|----|---------|-------|-----|----|-----|----|--------|----|------------| | |) ₂ . | | | | | | | | | | | | | | | | Write a word equation for the reduction of tin(IV) oxide by carbon. | | |---|--| | | [1] | | Malachite is heated to form copper oxide and two other chemicals. Name these chemicals. | | | and | [2] | | Copper oxide is reduced to copper which is then refined by electrolysis. Label the diagram of the apparatus which could be used to refine copper. | | | power supply | | | | Malachite is heated to form copper oxide and two other chemicals. Name these chemicals. and Copper oxide is reduced to copper which is then refined by electrolysis. Label the diagram of the apparatus which could be used to refine copper. power | [3] (iv) Give one use of copper, other than making alloys.[1] [Total: 15] 3 The diagram shows a cell. This is a device which produces electrical energy. The reaction in a cell is a redox reaction and involves electron transfer. A cell will change energy into electrical energy. [1] - (ii) Draw an arrow on the diagram to show the direction of the electron flow. [1] - (iii) In the left hand beaker, the colour changes from brown to colourless. Complete the equation for the reaction. $$Br_2 + \dots \rightarrow \dots$$ [2] (iv) Is the change in (iii) oxidation or reduction? Give a reason for your choice. (v) Complete the following description of the reaction in the right hand beaker. Fe²⁺ changes into [1] (vi) When a solution of bromine is replaced by a solution of chlorine, the voltage increases. When a solution of bromine is replaced by a solution of iodine, the voltage decreases. Suggest an explanation for this difference. [1] [Total: 7] | 1 | Ammon | nia is an important industrial ch | nemical | | | | | | | | | |---|------------------|---|------------|-------------|------------|------------|--------------|-------|--|--|--| | - | (a) (i) | Give the electron structure o | | of nitroge | n. | | | | | | | | | | [1] | | | | | | | | | | | | (ii) | Use this electronic structure, rather than the valency of nitrogen, to explain why the formula of ammonia is $\mathrm{NH_3}$ not $\mathrm{NH_4}.$ | 1 | | | | | | (b) Am | ımonia is made by the Haber F | | | | | | . [2] | | | | | | | • | | | | | | | | | | | | N ₂ (| $(g) + 3H2(g) \rightleftharpoons 2NH3(g)$ for | ward read | tion is exc | otnermic | | | | | | | | | The | e percentage of ammonia in th | e equilibr | ium mixtu | re varies | with condi | itions. | | | | | | | | pressure / atmospheres | 100 | 200 | 300 | 400 | | | | | | | | | % ammonia at 300 °C | 45 | 65 | 72 | 78 | | | | | | | | | % ammonia at 500 °C | 9 | 18 | 25 | 31 | | | | | | | | The | e conditions actually used are | 200 atmo | spheres, | 450 °C an | d an iron | catalyst. | | | | | | | (i) | The original catalyst was pla | tinum. Su | ggest a re | ason why | it was ch | anged to iro | n. | | | | | | | | | | | | | . [1] | | | | | | (ii) | Explain why the highest pre-
equilibrium mixture. | ssure give | es the hig | hest perce | entage of | ammonia ir | ı the | . [2] | | | | | | (iii) | What happens to the unreac | ted nitrog | en and hy | drogen? | | | | | | | | (iv) | State one advantage and one disadvantage of using a lower temperature. | E | |------|--|---| | | advantage | | | | [1] | | | | disadvantage | | | | [1] | | | | [Total: 9] | | | 5 | Monomers | nolymerise | to form | nolymere | or macromolecu | عما | |---|----------|------------|-----------|----------|----------------|------| | ວ | MOHOMEIS | polymense | lo lollli | polymers | oi macromolecu | IES. | | (a) (i) | Explain the term <i>polymerise</i> . | | | |---------|--------------------------------------|--|--| | | | | |[1] (b) An important monomer is chloroethene which has the structural formula shown below. $$H$$ $C = C$ It is made by the following method. $$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$$ dichloroethane This is heated to make chloroethene. $$C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl$$ (i) Ethene is made by cracking alkanes. Complete the equation for cracking dodecane. $$C_{12}H_{26} \rightarrow \dots + 2C_2H_4$$ [1] Another method of making dichloroethane is from ethane. $$C_2H_6 + 2Cl_2 \rightarrow C_2H_4Cl_2 + 2HCl$$ (ii) Suggest a reason why the method using ethene is preferred. | [1] | | |-----|--| (iii) Describe an industrial method of making chlorine. (iv) Draw the structural formula of poly(chloroethene). Include three monomer units. For Examiner's Use [2] [Total: 9] **6** The table below shows the elements in the second period of the Periodic Table and some of their oxidation states in their most common compounds. | element | Li | Ве | В | С | N | 0 | F | Ne | |---------------------------|----|----|----|----|----|----|----|----| | number of outer electrons | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | oxidation state | +1 | +2 | +3 | +4 | -3 | -2 | -1 | 0 | | (a) (i) | What does it mean when the only oxidation state of an element is zero? | |-----------------|--| | /::\ | [1] | | (ii) | Explain why some elements have positive oxidation states but others have negative ones. | | | [2] | | (iii) | Select ${\bf two}$ elements in the table which exist as diatomic molecules of the type ${\bf X}_2$. | | | [1] | | (b) Be | ryllium hydroxide, a white solid, is an amphoteric hydroxide. | | (i) | Name another metal which has an amphoteric hydroxide. | | | [1] | | (ii) | Suggest what you would observe when an excess of aqueous sodium hydroxide is added gradually to aqueous beryllium sulfate. | | | | | | [2] | | (c) (i) | Give the formulae of lithium fluoride and nitrogen fluoride. | | | lithium fluoride | | | nitrogen fluoride[2] | | (ii) | Predict two differences in their properties. | |-------|--| | | [2] | | (iii) | Explain why these two fluorides have different properties. | | | | | | [2] | | | [Total: 13] | 7 The diagram shows part of the carbon cycle. This includes some of the processes which determine the percentage of carbon dioxide in the atmosphere. | (i) | Carbon dioxide is one greenhouse gas. Name another one. | |-------|--| | | [1] | | (ii) | Explain the term <i>respiration</i> and how this process increases the percentage of carbon dioxide in the atmosphere. | | | | | | | | | [3] | | (iii) | Explain why the combustion of waste crop material should not alter the percentage of carbon dioxide in the atmosphere. | | | | | | [2] | | (iv) | In 1960 the percentage of carbon dioxide in the atmosphere was 0.032% and in 2008 it was 0.038%. Suggest an explanation for this increase. | | | | | | [2] | | | [Total: 8] | | 8 | Soluble sa | alts can | he r | made | using a | base a | nd an | acid | |---|------------|-----------|------|------|---------|--------|-------|-------| | U | OUIUDIC 36 | aito cari | DC I | Hauc | using a | Dasc a | nu an | aciu. | (a) Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride-6-water from the insoluble base cobalt(II) carbonate. | Step 1 | |--| | Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid. | | Step 2 | | | | | | | | Step 3 | | | | | | | | Step 4 | | | | [41] | | [4] | (b) 6.0 g of cobalt(II) carbonate was added to 40 cm³ of hydrochloric acid, concentration 2.0 mol/dm³. Calculate the maximum yield of cobalt(II) chloride-6-water and show that the cobalt(II) carbonate was in excess. $$\begin{split} \mathsf{CoCO_3} \ + 2\mathsf{HC}l \ \to \ \mathsf{CoC}l_2 \ + \ \mathsf{CO_2} \ + \ \mathsf{H_2O} \\ \\ \mathsf{CoC}l_2 \ + \ \mathsf{6H_2O} \ \to \ \mathsf{CoC}l_2.\mathsf{6H_2O} \end{split}$$ ## Maximum yield | Number of moles of HCl used = | | |---|-------------| | Number of moles of $CoCl_2$ formed = | | | Number of moles of $CoCl_2.6H_2O$ formed = | | | Mass of one mole of $CoCl_2$.6H ₂ O = 238 g | | | Maximum yield of $CoCl_2.6H_2O = \dots$ g | [4] | | To show that cobalt(II) carbonate is in excess | | | Number of moles of HCl used = (use value from above) | | | Mass of one mole of $CoCO_3 = 119g$ | | | Number of moles of CoCO ₃ in 6.0 g of cobalt(II) carbonate = | [1] | | Explain why cobalt(II) carbonate is in excess | | | | [1] | | | [Total: 10] | ## **BLANK PAGE** DATA SHEET The Periodic Table of the Elements | = | | | | | | | | Gr | Group | | | ≡ | ≥ | > | 5 | = | 0 | |--|-----------------------|------------|----------------------------|------------------|--|----------------------------|------------------------|------------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--|----------------------------------|-----------------------------------|-------------------------------------|------------------------------------| | | | | | | | | T
Hydrogen | | | | | | | | | | 4 He Helium | | 9 Be Beryllum | | | | | | | | | | | | 11 B | 12
C | 14 Nitrogen | 16
O
Oxygen | 19
Fluorine | 20
Neon | | 24 NG | | | | | | | | | | | | | 9 58 58 58 58 58 58 58 58 58 58 58 58 58 | 7 E G | 8 25 Q | 35.5
C1 | o 4 A | | magnesium
12 | | | | | | | | | | | | Aluminium
13 | ~ | Phosphorus
15 | 16 Sulfur | Chlorine
17 | 18 | | 40 45 48 51 Ca Sc Ti V | 88 | | 2 2 | | ⁵² | 55
M | . 26
D | ္တ တိ | 29
Z | ⁶ 2 | S
Z | ° 6 | გ შ | 75
As | 79
Se | | 8 7 | | Scandium Titanium Var | andium Titanium 22 | tanium | Vanadi
23 | Ę | Chromium
24 | 2 ≤ | lron
26 | Cobalt
27 | Nickel
28 | Copper
29 | Zinc
30 | 9 | Ε | Arsenic
33 | _ | m | Krypton
36 | | 88 > | 91 | | 93 | | 96 | Ĥ | | 103 | 106 | 108 | 112 | 115 | | 122 | 128 | 127 | 131 | | Strontium Yttrium Zirconlum Niobium 38 40 41 | rttrium Zirconium 40. | 4 | Niobium
41 | _ | Molybdenum
42 | m Technetium | Ruthenium | Rhodium
45 | Palladium
46 | Ag
Silver
47 | Cadmium
48 | 49 | 50 In | Antimony 51 | Tellurium
52 | lodine 53 | Xenon
54 | | 137 139 178 181
Ba La Hf Ta | 178
‡ | | 181 E | | 184 | 186
Re | | 192
Ir | 195
P | 197
Au | 201
H | 204
T 1 | 207
Pb | 209
B | Ъ | Ą | R | | Lanthanum Hafnium T 73 73 73 | nthanum Hafnium 7.2 | lafnium 7; | Tantalui
73 | ۶ | | _ | Osmium
76 | | Platinum
78 | Gold
79 | | Thallium
81 | | Bismuth
83 | | Astatine
85 | Radon
86 | | 226 227 Ra Ac Radium Actinium † | 227 | | | | | | | | | | | | | | | | | | *58-71 Lanthanoid series C C 190-103 Actinoid series | 28 | 28 Cer C | Cer Cer 58 | 140 Ce | 141
Pr
Praseodymium
59 | 144 Nd Neodymium 60 | Pm
Promethium
61 | 150
Sm
Samarium
62 | 152
Eu
Europium
63 | 157
Gd
Gadolinium
64 | 159
Tb
Terbium
65 | 162
Dy
Dysprosium
66 | 165
Ho
Holmium
67 | 167
Er
Erbium
68 | 169
Tm
Thulium
69 | 173
Yb
Ytterbium
70 | 175
Lu
Lutetium
71 | | a a = relative atomic mass X = atomic symbol | mass | mass | | 232
Th | Q | 238 | S | ۵ | Δ | S | ă | 5 | Ц | Ē | Z | 2 | - | | b = proton (atomic) number | 6 | 6 | 1
1
1
1
1
1 | Thorium | Protactinium 91 | Uranium
32 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Ε | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrendur
103 | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.